Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Neuropsychopharmacol Rep ; 44(1): 256-261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38156409

RESUMO

AIM: Excitatory projections from the prelimbic cortex (PL) to the basolateral nucleus of the amygdala (BLA) are implicated in the regulation of anxiety-like behaviors, and we previously demonstrated that anxiolytic-like effects of the selective delta-opioid receptor (DOP) agonist KNT-127 is involved in suppressing glutamate neurotransmission in the PL. Here, we investigated the mechanisms underlying the anxiolytic-like effect of KNT-127 in mice by combining optogenetic stimulation of the PL-BLA pathway with behavioral analyses. METHODS: Four-week-old male C57BL/6J mice received bilateral administration of adeno-associated virus (AAV)2-CaMKIIa-hChR2(H134R)-enhanced yellow fluorescent protein (EYFP) into the PL to induce expression of the light-activated excitatory ionic channel ChR2. Subsequently, an optic fiber cannula connected to a wireless photo-stimulator was implanted into the BLA for optogenetic PL-BLA pathway stimulation. We evaluated innate anxiety using the elevated plus maze (EPM) and open field (OF) tests as well as learned anxiety using the contextual fear conditioning (CFC) test. RESULTS: Optogenetic activation of the PL-BLA pathway enhanced anxiety-like behaviors in the EPM and OF, while prior subcutaneous administration of KNT-127 (10 mg/kg) reduced this anxiogenic effect. In contrast, optogenetic activation of the PL-BLA pathway had no significant effect on conditioned fear. CONCLUSION: Our findings indicate that the PL-BLA circuit contributes to innate anxiety and that the anxiolytic-like effects of KNT-127 are mediated at least in part by suppression of PL-BLA transmission. The PL delta-opioid receptor may thus be an effective therapeutic target for anxiety disorders.


Assuntos
Ansiolíticos , Complexo Nuclear Basolateral da Amígdala , Morfinanos , Camundongos , Animais , Masculino , Complexo Nuclear Basolateral da Amígdala/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Camundongos Endogâmicos C57BL , Ansiedade , Analgésicos Opioides
2.
Sci Rep ; 13(1): 17663, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907526

RESUMO

Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) are signaling molecules produced by 3-mercaptopyruvate sulfurtransferase (3MST) that play various physiological roles, including the induction of hippocampal long-term potentiation (LTP), a synaptic model of memory formation, by enhancing N-methyl-D-aspartate (NMDA) receptor activity. However, the presynaptic action of H2S/H2Sn on neurotransmitter release, regulation of LTP induction, and animal behavior are poorly understood. Here, we showed that H2S/H2S2 applied to the rat hippocampus by in vivo microdialysis induces the release of GABA, glutamate, and D-serine, a co-agonist of NMDA receptors. Animals with genetically knocked-out 3MST and the target of H2S2, transient receptor potential ankyrin 1 (TRPA1) channels, revealed that H2S/H2S2, 3MST, and TRPA1 activation play a critical role in LTP induction, and the lack of 3MST causes behavioral hypersensitivity to NMDA receptor antagonism, as in schizophrenia. H2S/H2Sn, 3MST, and TRPA1 channels have therapeutic potential for psychiatric diseases and cognitive deficits.


Assuntos
Sulfeto de Hidrogênio , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Ácido Glutâmico , Potenciação de Longa Duração , Serina , Proteínas do Citoesqueleto , Ácido gama-Aminobutírico , Receptores de N-Metil-D-Aspartato , Hipocampo/metabolismo
3.
PLoS One ; 18(11): e0294113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37971993

RESUMO

Oxytocin (OXT) neurons project to various brain regions and its receptor expression is widely distributed. Although it has been reported that OXT administration affects cognitive function, it is unclear how endogenous OXT plays roles in cognitive function. The present study examined the role of endogenous OXT in mice cognitive function. OXT neurons were specifically activated by OXT neuron-specific excitatory Designer Receptors Exclusively Activated by Designer Drug expression system and following administration of clozapine-N-oxide (CNO). Object recognition memory was assessed with the novel object recognition task (NORT). Moreover, we observed the expression of c-Fos via immunohistochemical staining to confirm neuronal activity. In NORT, the novel object exploration time percentage significantly increased in CNO-treated mice. CNO-treated mice showed a significant increase in the number of c-Fos-positive cells in the supramammillary nucleus (SuM). In addition, we found that the OXT-positive fibers from paraventricular hypothalamic nucleus (PVN) were identified in the SuM. Furthermore, mice injected locally with CNO into the SuM to activate OXTergic axons projecting from the PVN to the SuM showed significantly increased percentage time of novel object exploration. Taken together, we proposed that object recognition memory in mice could be modulated by OXT neurons in the PVN projecting to the SuM.


Assuntos
Hipotálamo , Ocitocina , Animais , Camundongos , Hipotálamo/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Ocitocina/metabolismo , Hipotálamo Posterior/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
4.
Cells ; 12(20)2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37887270

RESUMO

Alzheimer's disease (AD)-the most common cause of dementia in the elderly-is characterized by progressive memory loss and ß-amyloid protein (Aß) accumulation in the brain. Recently, loneliness was found to be a high risk factor for AD, and social isolation has become a major cause of AD. AD. Oxytocin (OXT), the main hormone involved in social bonding, has been implicated in social interactions, notably in building trust and relationships. Moreover, social isolation or social enrichment modulates the activation of neurons related to OXT. Recently, we reported that OXT reverses learning and memory impairment in AD animal models. Based on the limited number of studies currently available, OXT might be a therapeutic target for AD. Further studies are necessary in order to better understand the role of oxytocin in AD. In this review, we described the relationships between OXT, AD, and social interaction.


Assuntos
Doença de Alzheimer , Animais , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ocitocina , Interação Social , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo
5.
Neuropharmacology ; 232: 109511, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001727

RESUMO

Delta opioid receptors (DOPs) play an important role in depression and other mood disorders. However, little is known about the underlying physiological mechanisms. The hypothalamic-pituitary-adrenal axis, adult hippocampal neurogenesis, and neuroinflammation are regarded as key pathophysiological factors in depression. In this study, we investigated the influence of DOP activation on those factors in a valid animal model of depression, chronic vicarious social defeat stress (cVSDS) mice. cVSDS mice (male C57BL/6J mice) were produced following a 10-day exposure to witness of social defeat stress, and each evaluation was performed more than 28 days after the stress period. Repeated administrations to cVSDS mice with a selective DOP agonist, KNT-127, both during (10 days) and after (28 days) the stress period respectively improved their decreased social interaction behaviors and increased serum corticosterone levels. When administered during the stress period, KNT-127 suppressed decreases in the hippocampal newborn neuron survival rate in cVSDS mice. Moreover, in both administration paradigms, KNT-127 reduced the number of Iba-1- and CD11b-positive cells in the subgranular zone and the granule cell layer of the hippocampal dentate gyrus, indicating a suppression of cVSDS-induced microglial overactivation. These results suggest that KNT-127 acts over the hypothalamic-pituitary-adrenal axis and regulates neurogenesis and neuroinflammation resulting in anti-stress effects, and the antidepressant-like effects of the DOP agonist are implicated in the suppression of the neuroinflammation. This study presents a new finding on the effects of repeated DOP activations on the pathophysiological states of depression.


Assuntos
Receptores Opioides delta , Derrota Social , Masculino , Camundongos , Animais , Receptores Opioides delta/agonistas , Sistema Hipotálamo-Hipofisário/metabolismo , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Analgésicos Opioides/farmacologia , Hipocampo , Giro Denteado/metabolismo , Estresse Psicológico/tratamento farmacológico , Neurogênese , Depressão/tratamento farmacológico
6.
Nihon Yakurigaku Zasshi ; 157(6): 434, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36328555
7.
Nihon Yakurigaku Zasshi ; 157(6): 448-452, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36328559

RESUMO

The delta opioid receptor (DOP) belongs to the G protein-coupled receptor family and is abundant in the limbic system. In recent years, consistent with their distribution, they have been suggested to be involved in the regulation of emotional behavior. In particular, DOP agonists have been shown to exhibit antidepressant and anxiolytic-like effects, and clinical trials are underway as targets for the development of new psychotropic drugs with mechanisms of action different from those of existing monoamine drugs. In this article, we review the roles and mechanisms of DOP in emotion regulation that are being elucidated in basic studies using rodents, and also introduce the current status of its clinical application.


Assuntos
Antidepressivos , Receptores Opioides delta , Receptores Opioides delta/agonistas , Antidepressivos/farmacologia , Emoções , Psicotrópicos
8.
Front Neurosci ; 16: 993132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277999

RESUMO

Increasing evidence has demonstrated that emotional states and intestinal conditions are inter-connected in so-called "brain-gut interactions." Indeed, many psychiatric disorders are accompanied by gastrointestinal symptoms, such as the irritable bowel syndrome (IBS). However, the functional connection remains elusive, partly because there are few useful experimental animal models. Here, we focused on a highly validated animal model of stress-induced psychiatric disorders, such as depression, known as the chronic vicarious social defeat stress (cVSDS) model mice, which we prepared using exposure to repeated psychological stress, thereafter examining their intestinal conditions. In the charcoal meal test and the capsaicin-induced hyperalgesia test, cVSDS model mice showed a significantly higher intestinal transit ratio and increased visceral pain-related behaviors, respectively. These changes persisted over one month after the stress session. On the other hand, the pathological evaluations of the histological and inflammatory scores of naive and cVSDS model mice did not differ. Furthermore, keishikashakuyakuto-a kampo medicine clinically used for the treatment of IBS-normalized the intestinal motility change in cVSDS model mice. Our results indicate that cVSDS model mice present IBS-like symptoms such as chronic intestinal peristaltic changes and abdominal hyperalgesia without organic lesion. We therefore propose the cVSDS paradigm as a novel animal model of IBS with wide validity, elucidating the correlation between depressive states and intestinal abnormalities.

9.
Neuropsychopharmacol Rep ; 42(4): 492-501, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36117475

RESUMO

AIM: We previously reported that oxytocin, a peptide hormone, can reverse the ß-amyloid peptide (25-35) (Aß25-35 )-induced impairments of the murine hippocampal synaptic plasticity. In this study, we examined the effects of oxytocin on the Aß25-35 -induced impairment of cognitive behavior in murine in order to investigate the potential of oxytocin as a clinical treatment tool for Alzheimer's disease (AD). METHODS: The Y-maze and Morris water maze (MWM) tests were performed. Since the intracerebroventricular (ICV) administration is both invasive and impractical, we further utilized intranasal (IN) delivery to the brain. For this purpose, we prepared an oxytocin derivative containing cell-penetrating peptides and a penetration accelerating sequence, which was subsequently used in our IN administration experiments. RESULTS: We herein showed that the ICV administration of oxytocin in mice exerted memory-improving effects on the Aß25-35 -induced amnesia in both the Y-maze and MWM tests. The IN administration of the oxytocin derivative exhibited memory-improving effects in the Y-maze test. Moreover, we acquired evidence that the fluorescein isothiocyanate-labeled oxytocin derivative was distributed throughout the mouse brain following its IN administration. CONCLUSION: Our results suggest that the oxytocin derivative is effective for its IN delivery to the brain and may be particularly useful in the clinical treatment of cognitive impairment, such as that characterizing AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Ocitocina/efeitos adversos , Administração Intranasal , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico
10.
Neuroreport ; 33(10): 445-449, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35703736

RESUMO

OBJECTIVES: According to previous studies, ultrasound exposure appears to be a noninvasive method for modulating brain activity related to cognition and consciousness; however, its effects on emotional states remain unclear. Therefore, an animal model is required in which the effects and effect mechanisms of ultrasound exposure can be investigated. Thus, we used olfactory bulbectomized rats as an animal model of depression and investigated their emotional state following ultrasound exposure. METHODS: In male Wistar/ST olfactory bulbectomized rats, hyperemotionality was evaluated according to hyperemotionality scoring and the scores before and after 24-h ultrasound exposure were compared. Elevated plus maze (EPM) tests were also conducted after 24-h ultrasound exposure, and blood samples were collected in which plasma corticosterone concentrations were measured. RESULTS: Following exposure to high-frequency (~50 kHz) ultrasound vocalizations (USVs) associated with the pleasant emotions of rats, the hyperemotionality scores of olfactory bulbectomized rats were significantly reduced. Additionally, the latency of the first entry into the open arm of the EPM was significantly decreased in USV-exposed olfactory bulbectomized rats, as were their plasma corticosterone levels. Furthermore, artificial ultrasound (50 kHz) at a similar frequency to that of USV also significantly decreased the hyperemotionality score of olfactory bulbectomized rats. CONCLUSIONS: Ultrasound exposure improved depressive-like behavior in olfactory bulbectomized rats and reduced their plasma corticosterone levels. Thus, we recommend the use of olfactory bulbectomized rats as an animal model for investigating the effects and effect mechanisms of ultrasound exposure.


Assuntos
Corticosterona , Depressão , Animais , Comportamento Animal , Modelos Animais de Doenças , Masculino , Bulbo Olfatório/cirurgia , Ratos , Ratos Wistar , Olfato
11.
Front Behav Neurosci ; 16: 808232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264937

RESUMO

Facilitation of fear extinction is a desirable action for the drugs to treat fear-related diseases, such as posttraumatic stress disorder (PTSD). We previously reported that a selective agonist of the δ-opioid receptor (DOP), KNT-127, facilitates contextual fear extinction in mice. However, its site of action in the brain and the underlying molecular mechanism remains unknown. Here, we investigated brain regions and cellular signaling pathways that may mediate the action of KNT-127 on fear extinction. Twenty-four hours after the fear conditioning, mice were reexposed to the conditioning chamber for 6 min as extinction training (reexposure 1). KNT-127 was microinjected into either the basolateral nucleus of the amygdala (BLA), hippocampus (HPC), prelimbic (PL), or infralimbic (IL) subregions of the medial prefrontal cortex, 30 min before reexposure 1. Next day, mice were reexposed to the chamber for 6 min as memory testing (reexposure 2). KNT-127 that infused into the BLA and IL, but not HPC or PL, significantly reduced the freezing response in reexposure 2 compared with those of control. The effect of KNT-127 administered into the BLA and IL was antagonized by pretreatment with a selective DOP antagonist. Further, the effect of KNT-127 was abolished by local administration of MEK/ERK inhibitor into the BLA, and PI3K/Akt inhibitor into the IL, respectively. These results suggested that the effect of KNT-127 was mediated by MEK/ERK signaling in the BLA, PI3K/Akt signaling in the IL, and DOPs in both brain regions. Here, we propose that DOPs play a role in fear extinction via distinct signaling pathways in the BLA and IL.

12.
Front Pharmacol ; 13: 826783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330835

RESUMO

Disulfiram is an FDA approved drug for the treatment of alcoholism. The drug acts by inhibiting aldehyde dehydrogenase, an enzyme essential to alcohol metabolism. However, a recent study has demonstrated that disulfiram also potently inhibits the cytoplasmic protein FROUNT, a common regulator of chemokine receptor CCR2 and CCR5 signaling. Several studies have reported that chemokine receptors are associated with the regulation of emotional behaviors in rodents, such as anxiety. Therefore, this study was performed to clarify the effect of disulfiram on emotional behavior in rodents. The anxiolytic-like effects of disulfiram were investigated using an elevated plus-maze (EPM) test, a typical screening model for anxiolytics. Disulfiram (40 or 80 mg/kg) significantly increased the amount of time spent in the open arms of the maze and the number of open arm entries without affecting the total open arms entries. Similar results were obtained in mice treated with a selective FROUNT inhibitor, disulfiram-41 (10 mg/kg). These disulfiram-associated behavioral changes were similar to those observed following treatment with the benzodiazepine anxiolytic diazepam (1.5 mg/kg). Moreover, disulfiram (40 mg/kg) significantly and completely attenuated increased extracellular glutamate levels in the prelimbic-prefrontal cortex (PL-PFC) during stress exposure on the elevated open-platform. However, no effect in the EPM test was seen following administration of the selective aldehyde dehydrogenase inhibitor cyanamide (40 mg/kg). In contrast to diazepam, disulfiram caused no sedation effects in the open-field, coordination disorder on a rotarod, or amnesia in a Y-maze. This is the first report suggesting that disulfiram produces anxiolytic-like effects in rodents. We found that the presynaptic inhibitory effects on glutaminergic neurons in the PL-PFC may be involved in its underlying mechanism. Disulfiram could therefore be an effective and novel anxiolytic drug that does not produce benzodiazepine-related adverse effects, such as amnesia, coordination disorder, or sedation, as found with diazepam. We propose that the inhibitory activity of disulfiram against FROUNT function provides an effective therapeutic option in anxiety.

13.
Neuropsychopharmacol Rep ; 42(2): 213-217, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35118831

RESUMO

Stress has been shown to affect brain activity and exert potent and complex modulatory effects on pain. Several behavioral tests have shown that acute stress produces hyperalgesia, depending on the stress conditions. In the present study, we investigated the effects of single restraint stress on the tactile threshold and anxiety sensitivity in mice. Mice were evaluated for the tactile threshold using von Frey filaments and for anxiety sensitivity using the elevated plus maze (EPM) test. Tactile thresholds were lowered by both 2 and 4 hour of restraint stress, but anxiety-like behaviors were observed only after 4 hour of restraint stress in the EPM test. In addition, we found that alfaxalone, which is a positive allosteric modulator of the γ-aminobutyric acid (GABA)A receptor, prevented restraint stress-induced hyperalgesia-like and anxiety-like behaviors. These results indicate that GABAergic function appears to be critical in the regulation of physical stress-induced hyperalgesia and anxiety.


Assuntos
Hiperalgesia , Pregnanodionas , Animais , Ansiedade/etiologia , Hiperalgesia/etiologia , Camundongos , Restrição Física
14.
Biochem Biophys Res Commun ; 597: 30-36, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123263

RESUMO

Viral spike proteins play important roles in the viral entry process, facilitating attachment to cellular receptors and fusion of the viral envelope with the cell membrane. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor angiotensin converting enzyme-2 (ACE2) via its receptor-binding domain (RBD). The cysteine residue at position 488, consisting of a disulfide bridge with cysteine 480 is located in an important structural loop at ACE2-binding surface of RBD, and is highly conserved among SARS-related coronaviruses. We showed that the substitution of Cys-488 with alanine impaired pseudotyped SARS-CoV-2 infection, syncytium formation, and cell-cell fusion triggered by SARS-CoV-2 spike expression. Consistently, in vitro binding of RBD and ACE2, spike-mediated cell-cell fusion, and pseudotyped viral infection of VeroE6/TMPRSS2 cells were inhibited by the thiol-reactive compounds N-acetylcysteine (NAC) and a reduced form of glutathione (GSH). Furthermore, we demonstrated that the activity of variant spikes from the SARS-CoV-2 alpha and delta strains were also suppressed by NAC and GSH. Taken together, these data indicate that Cys-488 in spike RBD is required for SARS-CoV-2 spike functions and infectivity, and could be a target of anti-SARS-CoV-2 therapeutics.

15.
Am J Hosp Palliat Care ; 39(10): 1145-1151, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35045754

RESUMO

BACKGROUND: Opioids are known to induce delirium, but few studies have closely investigated differences in incidence of delirium among different opioids. OBJECTIVES: To determine whether there is a clinically significant difference in the incidence of delirium between oral opioids in previously opioid-naive patients. METHODS: Subjects were 259 opioid-naive in-patients with cancer who were started on morphine sulfate, oxycodone hydrochloride, or tapentadol hydrochloride extended-release tablets at our hospital between August 1, 2014, and September 30, 2018. The incidence of delirium during the first week of treatment was compared between the drugs. RESULTS: The incidence of delirium was 4.8% (n = 83) for morphine sulfate, 6.9% (n = 131) for oxycodone hydrochloride, and 6.7% (n = 45) for tapentadol hydrochloride. The incidence did not significantly differ between oxycodone hydrochloride (OR = .69, 95% CI = .20-2.30, P [Fisher's exact test] = .77) or tapentadol hydrochloride (OR = .71, 95% CI = .15-3.32, P [Fisher's exact test] = .70) and morphine sulfate (reference group). Moreover, the incidence did not significantly differ between tapentadol hydrochloride (OR = 1.03, 95% CI = .27-3.00, P [Fisher's exact test] = 1.00) and oxycodone hydrochloride (reference group). CONCLUSION: The incidence of delirium in previously opioid-naive patients did not differ significantly among morphine sulfate, oxycodone hydrochloride, and tapentadol hydrochloride extended-release tablets, suggesting similar risk of delirium in opioid-naive patients among these oral opioids.


Assuntos
Analgésicos Opioides , Delírio , Analgésicos Opioides/efeitos adversos , Delírio/induzido quimicamente , Delírio/tratamento farmacológico , Delírio/epidemiologia , Humanos , Incidência , Morfina/efeitos adversos , Oxicodona/efeitos adversos , Tapentadol
16.
Biol Pharm Bull ; 45(3): 268-275, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046246

RESUMO

Ultrasonic vocalization (USVs) is a promising tool to measure behavioral anxiety in rodents as USV recording is noninvasive, behaviorally relevant, ethological, and reproducible. Studies reporting the effects of stress-induced USVs in adult mice remain limited and debated. We investigated the conditions under which mice emit aversive USVs and evaluated the effects of psychiatric drugs on stress-induced USVs. Male C57BL/6J mice were used. USVs during entire stress sessions were recorded according to their frequency. To investigate the effect of psychiatric drugs on USVs, the number of USVs under cold-restraint stress conditions before and after drug administration was compared. Immediately after stress exposure, blood samples were collected and plasma corticosterone levels were measured. The combination of cold and restraint stress conditions significantly increased the USV numbers and plasma corticosterone levels compared with each stress alone. A benzodiazepine anxiolytic (midazolam) and δ-opioid receptor agonist putative anxiolytic (KNT-127) significantly reduced the stress-induced USV number and plasma corticosterone levels; however, a monoaminergic antidepressant (duloxetine) and N-methyl-D-aspartic acid receptor antagonist antidepressant (ketamine) did not reduce the USV numbers. No changes were noted in the USV numbers after repeated exposure to cold-restraint stress on days 1 and 3. The suppressive effect of midazolam on day 3 was comparable to that on day 1. Stress-induced USV may be used as a quantitative measure of anxiety to systematically assess the effects of anxiolytics. Therefore, cold-restraint stress-induced USVs may be used as a novel tool to measure rodent anxiety and as a useful anxiolytic-screening system.


Assuntos
Ansiolíticos , Vocalização Animal , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Ansiedade/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ultrassom
17.
Behav Brain Res ; 416: 113536, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34416303

RESUMO

Increasing evidence has shown that adult hippocampal neurogenesis is closely related to the pathophysiological condition of depressive disorders. Recently, chronic social defeat stress paradigms have been regarded as important animal models of depression, accompanied with neural plastic changes in the hippocampus. However, little is known about influences of non-physical stress on neurogenesis. In the present study, we focused on the chronic vicarious social defeat stress paradigm and examined the effect of psychological stress on mouse hippocampal neurogenesis. Immediately after the chronic psychological stress, the cell survival rate in the dentate gyrus of the hippocampus was significantly diminished without modifying the cell proliferation rate. The decreased ratio in cell survival persisted for 4 weeks after the stress-loading period, while the differentiation and maturity of new-born neurons were identical to control groups. Furthermore, treatment with the chronic antidepressant fluoxetine reversed the social behavioral deficits and promoted new-born neurons survival. These results demonstrate that emotional stress in the vicarious social defeat stress paradigm influences neuronal cell survival in the hippocampus, which reinforces its validity as an animal model of depression.


Assuntos
Antidepressivos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fluoxetina , Hipocampo/efeitos dos fármacos , Neurogênese , Derrota Social , Animais , Modelos Animais de Doenças , Fluoxetina/antagonistas & inibidores , Fluoxetina/farmacologia , Masculino , Camundongos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/fisiologia
18.
Sci Rep ; 11(1): 16276, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381165

RESUMO

Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder. Traumatic stress during adolescence increases the risk of IBS in adults. The aim of this study was to characterize the juvenile social defeat stress (SDS)-associated IBS model in mice. Juvenile mice were exposed to an aggressor mouse for 10 min once daily for 10 consecutive days. Behavioral tests, visceral sensitivity, immune responses, and fecal bacteria in the colon were evaluated in 5 weeks after SDS exposure. Social avoidance, anxiety- and depression-like behavior, and visceral hypersensitivity were observed. Juvenile SDS exposure significantly increased the number of 5-HT-containing cells and calcitonin gene-related peptide-positive neurons in the colon. The gut microbiota was largely similar between the control and juvenile SDS groups. The alterations in fecal pellet output, bead expulsion time, plasma corticosterone concentration, and colonic 5-HT content in response to restraint stress were exacerbated in the juvenile SDS group compared with the control group. The combination of juvenile SDS and restraint stress increased the noradrenaline metabolite 3-Methoxy-4-hydroxyphenylglycol (MHPG) content and MHPG/noradrenaline ratio in the amygdala when compared with restraint stress in control mice. These results suggest that juvenile SDS exposure results in later onset of IBS-like symptoms.


Assuntos
Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/psicologia , Derrota Social , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Dor Abdominal , Fatores Etários , Animais , Ansiedade , Aprendizagem da Esquiva , Comportamento Animal , Colo/metabolismo , Modelos Animais de Doenças , Síndrome do Intestino Irritável/metabolismo , Masculino , Metoxi-Hidroxifenilglicol/metabolismo , Camundongos , Norepinefrina/metabolismo , Serotonina/metabolismo , Comportamento Social , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo
19.
Biochem Biophys Res Commun ; 560: 192-198, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34000468

RESUMO

The medial prefrontal cortex (mPFC) plays a vital role in the processing of emotional events. It has been shown that activation of the glutamatergic transmission in prelimbic subregion of the mPFC (PL-PFC) evoked anxiety-like behavior in rodents. We previously reported that local perfusion of a selective agonist to delta-opioid receptor (DOP), KNT-127, attenuated the veratrine-induced elevation of extracellular glutamate in the PL-PFC and anxiety-like behavior in mice. These results suggested the possibility that KNT-127 suppresses glutamate release from the presynaptic site in the PL-PFC. To examine this possibility directly, we performed whole-cell patch-clamp recording from principal neurons in the PL-PFC and examined the spontaneous and electrically-evoked excitatory postsynaptic currents (EPSC)s. We found that bath application of KNT-127 significantly decreased the frequency of spontaneous and miniature EPSCs. Conversely, amplitude, rise time, and decay time of spontaneous and miniature EPSCs were not affected by bath application of KNT-127. Also, KNT-127 increased paired-pulse ratios of electrically-evoked EPSCs in the PL-PFC principal neurons tested. Further, we analyzed the firing properties of pyramidal neurons in the PL-PFC and found that KNT-127 treatment significantly reduced the number of action potentials and firing threshold. These results suggested that KNT-127 suppresses glutamatergic synaptic transmission by inhibiting glutamate release from the presynaptic site and reduces neuronal excitability in the mouse PL-PFC. We propose the possibility that these suppressing effects of KNT-127 on PL-PFC activity are part of the underlying mechanisms of its anxiolytic-like effects.


Assuntos
Morfinanos/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Receptores Opioides delta/agonistas , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
20.
Brain Res ; 1757: 147297, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33516811

RESUMO

Although delta opioid receptors (DOP) are now known to play a major role in modulating chronic pain and controlling emotional processes, unfortunately, some DOP agonists, such as SNC80, reportedly produced convulsive-like behaviors manifesting as tremor-like behaviors in a preclinical study. Therefore, these induced convulsions limit the progress of the clinical development of DOP agonists. However, mechanisms underlying DOP-induced convulsant activity remain unclarified. Thus, the study aimed to elucidate mechanisms that could cause tremor-like behaviors of SNC80. These drugs were microinjected into the ventral hippocampus CA3 (vCA3), amygdala (AMY), and insular cortex (IC) of mice. In addition, we examined the extracellular glutamate levels after DOP agonist local treatment. Microinjection of SNC80 into the vCA3 increased the number of tremor-like behaviors and extracellular glutamate levels but did not cause tremor-like behaviors in mice when microinjected into IC and AMY. Pretreatment with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainite receptor antagonist CNQX into vCA3 totally inhibited the SNC80-induced increases in tremor-like behaviors. In contrast, another DOP agonist, KNT-127, did not cause tremor-like behaviors in any of the tested brain areas. Further, the extracellular glutamate levels in the hippocampus were significantly lower in the KNT-127-treated mice than in the SNC80-treated mice. Our results showed that the administration of SNC80, but not KNT-127, into vCA3 induced tremor-like behaviors by activating glutamatergic neurons in mice. We propose that KNT-127 should be further studied clinically as a DOP agonist that is expected to have a low risk for convulsions than those resulting in antinociceptive and antidepressant effects.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacocinética , Hipocampo/efeitos dos fármacos , Morfinanos/farmacologia , Piperazinas/farmacocinética , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Córtex Insular/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Naltrexona/farmacologia , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides delta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...